James Cook University Subject Handbook - 2018

MA3405 - Statistical Data Mining for Big Data

Credit points: 03
Year: 2018
Student Contribution Band: Band 2
Administered by: College of Science and Engineering

Recent advances in technology makes it possible to collect, store and analyse very large data sets. Consequently, the contemporary scientist must be skilled in extracting important information embedded in large and complex data sets if they are to offer advances in knowledge to industry, business, research and societies of the 21st century. Moreover, employers are increasingly demanding that graduates can make important discoveries by interrogating large data sets. This subject will provide the bridge between mathematical theory and applied computing methods via the R programming language to give students a strong grounding in statistical learning methods for analysing Big Data sets. A range of supervised and unsupervised learning methods will be covered.

Learning Outcomes

Prerequisites:MA2405 OR MA2000

Availabilities

Townsville, Internal, Study Period 2
Census Date 23-Aug-2018
Coord/Lect: Assoc. Professor Yvette Everingham.
Contact hours:
  • 26 hours lectures
  • 13 hours practicals
    Assessment:other exams (50%); assignments (50%).

    Cairns, Internal, Study Period 2
    Census Date 23-Aug-2018
    Coord/Lect: Assoc. Professor Yvette Everingham.
    Contact hours:
    • 26 hours lectures
    • 13 hours practicals
      Assessment:other exams (50%); assignments (50%).

      Note: Minor variations might occur due to the continuous Subject quality improvement process, and in case of minor variation(s) in assessment details, the Subject Outline represents the latest official information.